ppsbm - Clustering in Longitudinal Networks
Stochastic block model used for dynamic graphs represented
by Poisson processes. To model recurrent interaction events in
continuous time, an extension of the stochastic block model is
proposed where every individual belongs to a latent group and
interactions between two individuals follow a conditional
inhomogeneous Poisson process with intensity driven by the
individuals’ latent groups. The model is shown to be
identifiable and its estimation is based on a semiparametric
variational expectation-maximization algorithm. Two versions of
the method are developed, using either a nonparametric
histogram approach (with an adaptive choice of the partition
size) or kernel intensity estimators. The number of latent
groups can be selected by an integrated classification
likelihood criterion. Y. Baraud and L. Birgé (2009).
<doi:10.1007/s00440-007-0126-6>. C. Biernacki, G. Celeux and G.
Govaert (2000). <doi:10.1109/34.865189>. M. Corneli, P.
Latouche and F. Rossi (2016).
<doi:10.1016/j.neucom.2016.02.031>. J.-J. Daudin, F. Picard and
S. Robin (2008). <doi:10.1007/s11222-007-9046-7>. A. P.
Dempster, N. M. Laird and D. B. Rubin (1977).
<http://www.jstor.org/stable/2984875>. G. Grégoire (1993).
<http://www.jstor.org/stable/4616289>. L. Hubert and P. Arabie
(1985). <doi:10.1007/BF01908075>. M. Jordan, Z. Ghahramani, T.
Jaakkola and L. Saul (1999). <doi:10.1023/A:1007665907178>. C.
Matias, T. Rebafka and F. Villers (2018).
<doi:10.1093/biomet/asy016>. C. Matias and S. Robin (2014).
<doi:10.1051/proc/201447004>. H. Ramlau-Hansen (1983).
<doi:10.1214/aos/1176346152>. P. Reynaud-Bouret (2006).
<doi:10.3150/bj/1155735930>.