Package: ppsbm 0.2.2

ppsbm: Clustering in Longitudinal Networks

Stochastic block model used for dynamic graphs represented by Poisson processes. To model recurrent interaction events in continuous time, an extension of the stochastic block model is proposed where every individual belongs to a latent group and interactions between two individuals follow a conditional inhomogeneous Poisson process with intensity driven by the individuals’ latent groups. The model is shown to be identifiable and its estimation is based on a semiparametric variational expectation-maximization algorithm. Two versions of the method are developed, using either a nonparametric histogram approach (with an adaptive choice of the partition size) or kernel intensity estimators. The number of latent groups can be selected by an integrated classification likelihood criterion. Y. Baraud and L. Birgé (2009). <doi:10.1007/s00440-007-0126-6>. C. Biernacki, G. Celeux and G. Govaert (2000). <doi:10.1109/34.865189>. M. Corneli, P. Latouche and F. Rossi (2016). <doi:10.1016/j.neucom.2016.02.031>. J.-J. Daudin, F. Picard and S. Robin (2008). <doi:10.1007/s11222-007-9046-7>. A. P. Dempster, N. M. Laird and D. B. Rubin (1977). <http://www.jstor.org/stable/2984875>. G. Grégoire (1993). <http://www.jstor.org/stable/4616289>. L. Hubert and P. Arabie (1985). <doi:10.1007/BF01908075>. M. Jordan, Z. Ghahramani, T. Jaakkola and L. Saul (1999). <doi:10.1023/A:1007665907178>. C. Matias, T. Rebafka and F. Villers (2018). <doi:10.1093/biomet/asy016>. C. Matias and S. Robin (2014). <doi:10.1051/proc/201447004>. H. Ramlau-Hansen (1983). <doi:10.1214/aos/1176346152>. P. Reynaud-Bouret (2006). <doi:10.3150/bj/1155735930>.

Authors:D. Giorgi, C. Matias, T. Rebafka, F. Villers

ppsbm_0.2.2.tar.gz
ppsbm_0.2.2.zip(r-4.5)ppsbm_0.2.2.zip(r-4.4)ppsbm_0.2.2.zip(r-4.3)
ppsbm_0.2.2.tgz(r-4.4-any)ppsbm_0.2.2.tgz(r-4.3-any)
ppsbm_0.2.2.tar.gz(r-4.5-noble)ppsbm_0.2.2.tar.gz(r-4.4-noble)
ppsbm_0.2.2.tgz(r-4.4-emscripten)ppsbm_0.2.2.tgz(r-4.3-emscripten)
ppsbm.pdf |ppsbm.html
ppsbm/json (API)

# Install 'ppsbm' in R:
install.packages('ppsbm', repos = c('https://daphnegiorgi.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.27 score 37 scripts 104 downloads 27 exports 9 dependencies

Last updated 7 years agofrom:f66796dc40. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 26 2024
R-4.5-winOKOct 26 2024
R-4.5-linuxOKOct 26 2024
R-4.4-winOKOct 26 2024
R-4.4-macOKOct 26 2024
R-4.3-winOKOct 26 2024
R-4.3-macOKOct 26 2024

Exports:ARIbootstrap_and_CIclassIndconfidenceIntervalconvertGroupPairconvertNodePaircorrectTaufind_qlfind_ql_diffgenerateDynppsbmgenerateDynppsbmConstgeneratePPgeneratePPConstkernelIntensitieslistNodePairsmainVEMmainVEMParmodelSelec_QPlotmodelSelection_QpermuteZEstsortIntensitiesstatisticstauDown_QtauInitialtauKmeansSbmtaurhoInitialtauUp_Q

Dependencies:clueclustergtoolsRcppRcppArmadilloRcppGSLRcppParallelRcppZigguratRfast