Package: ppsbm 1.0.0
ppsbm: Clustering in Longitudinal Networks
Stochastic block model used for dynamic graphs represented by Poisson processes. To model recurrent interaction events in continuous time, an extension of the stochastic block model is proposed where every individual belongs to a latent group and interactions between two individuals follow a conditional inhomogeneous Poisson process with intensity driven by the individuals’ latent groups. The model is shown to be identifiable and its estimation is based on a semiparametric variational expectation-maximization algorithm. Two versions of the method are developed, using either a nonparametric histogram approach (with an adaptive choice of the partition size) or kernel intensity estimators. The number of latent groups can be selected by an integrated classification likelihood criterion. Y. Baraud and L. Birgé (2009). <doi:10.1007/s00440-007-0126-6>. C. Biernacki, G. Celeux and G. Govaert (2000). <doi:10.1109/34.865189>. M. Corneli, P. Latouche and F. Rossi (2016). <doi:10.1016/j.neucom.2016.02.031>. J.-J. Daudin, F. Picard and S. Robin (2008). <doi:10.1007/s11222-007-9046-7>. A. P. Dempster, N. M. Laird and D. B. Rubin (1977). <http://www.jstor.org/stable/2984875>. G. Grégoire (1993). <http://www.jstor.org/stable/4616289>. L. Hubert and P. Arabie (1985). <doi:10.1007/BF01908075>. M. Jordan, Z. Ghahramani, T. Jaakkola and L. Saul (1999). <doi:10.1023/A:1007665907178>. C. Matias, T. Rebafka and F. Villers (2018). <doi:10.1093/biomet/asy016>. C. Matias and S. Robin (2014). <doi:10.1051/proc/201447004>. H. Ramlau-Hansen (1983). <doi:10.1214/aos/1176346152>. P. Reynaud-Bouret (2006). <doi:10.3150/bj/1155735930>.
Authors:
ppsbm_1.0.0.tar.gz
ppsbm_1.0.0.zip(r-4.5)ppsbm_1.0.0.zip(r-4.4)ppsbm_1.0.0.zip(r-4.3)
ppsbm_1.0.0.tgz(r-4.5-any)ppsbm_1.0.0.tgz(r-4.4-any)ppsbm_1.0.0.tgz(r-4.3-any)
ppsbm_1.0.0.tar.gz(r-4.5-noble)ppsbm_1.0.0.tar.gz(r-4.4-noble)
ppsbm_1.0.0.tgz(r-4.4-emscripten)ppsbm_1.0.0.tgz(r-4.3-emscripten)
ppsbm.pdf |ppsbm.html✨
ppsbm/json (API)
NEWS
# Install 'ppsbm' in R: |
install.packages('ppsbm', repos = c('https://daphnegiorgi.r-universe.dev', 'https://cloud.r-project.org')) |
- generated_Q3 - Example dataset
- generated_Q3_n20 - Example dataset
- generated_sol_hist - Output example of mainVEM
- generated_sol_kernel - Output example of mainVEM
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 months agofrom:a56fc99651. Checks:9 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 16 2025 |
R-4.5-win | OK | Mar 16 2025 |
R-4.5-mac | OK | Mar 16 2025 |
R-4.5-linux | OK | Mar 16 2025 |
R-4.4-win | OK | Mar 16 2025 |
R-4.4-mac | OK | Mar 16 2025 |
R-4.4-linux | OK | Mar 16 2025 |
R-4.3-win | OK | Mar 16 2025 |
R-4.3-mac | OK | Mar 16 2025 |
Exports:ARIbootstrap_and_CIconvertGroupPairconvertNodePairfind_qlgenerateDynppsbmgenerateDynppsbmConstgeneratePPgeneratePPConstkernelIntensitieslistNodePairsmainVEMmodelSelec_QPlotmodelSelection_QsortIntensitiesstatistics
Dependencies:clueclustergtoolsRcppRcppArmadilloRcppParallelRfastzigg
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Adjusted Rand Index (ARI) | ARI |
Bootstrap and Confidence Bands | bootstrap_and_CI |
Convert group pair (q,l) | convertGroupPair |
Convert node pair (i,j) | convertNodePair |
Convert index into group pair | find_ql |
Example dataset | generated_Q3 |
Example dataset | generated_Q3_n20 |
Output example of mainVEM | generated_sol_hist |
Output example of mainVEM | generated_sol_kernel |
Dynppsbm data generator | generateDynppsbm |
Data under dynppsbm with piecewise constant intensities | generateDynppsbmConst |
Poisson process generator | generatePP |
Poisson process with piecewise constant intensity | generatePPConst |
Direct kernel estimator intensities | kernelIntensities |
List node pairs | listNodePairs |
Adaptive VEM algorithm | mainVEM |
Plots for model selection | modelSelec_QPlot |
Selects the number of groups with ICL criterion | modelSelection_Q |
Sort intensities | sortIntensities |
Compute statistics | statistics |